Клеточный цикл. Клеточный цикл - митоз: описание фаз G0, G1, G2, S

Клеточный цикл

Клеточный цикл состоит из митоза (М-фаза) и интерфазы. В интерфазе последовательно различают фазы G 1 , S и G 2 .

СТАДИИ КЛЕТОЧНОГО ЦИКЛА

Интерфаза

G 1 следует за телофазой митоза. В эту фазу клетка синтезирует РНК и белки. Продолжительность фазы – от нескольких часов до нескольких дней.

G 2 клетки могут выйти из цикла и находится в фазе G 0 . В фазе G 0 клетки начинают дифференцироваться.

S . В фазу S в клетке продолжается синтез белка, происходит репликация ДНК, разделяются центриоли. В большинстве клеток фаза S длится 8-12 часов.

G 2 . В фазу G 2 продолжается синтез РНК и белка (например, синтез тубулина для микротрубочек митотического веретена). Дочерние центриоли достигают размеров дефинитивных органелл. Эта фаза длится 2-4 часа.

МИТОЗ

В ходе митоза делятся ядро (кариокинез) и цитоплазма (цитокинез). Фазы митоза: профаза, прометафаза, метафаза, анафаза, телофаза.

Профаза . Каждая хромосома состоит из двух сестринских хроматид, соединенных центромерой, исчезает ядрышко. Центриоли организуют митотическое веретено. Пара центриолей входит в состав митотического центра, от которого радиально отходят микротрубочки. Сначала митотические центры располагаются вблизи ядерной мембраны, а затем расходятся, и образуется биполярное митотическое веретено. В этом процессе участвуют полюсные микротрубочки, взаимодействующие между собой по мере удлинения.

Центриоль входит в состав центросомы (центросома содержит две центриоли и перицентриольный матрикс) и имеет форму цилиндра диаметром 15- нм и длиной 500 нм; стенка цилиндра состоит из 9 триплетов микротрубочек. В центросоме центриоли расположены под прямым углом друг к другу. В ходе фазы S клеточного цикла центриоли дуплицируются. В митозе пары центриолей, каждая из которых состоит из первоначальной и вновь образованной, расходятся к полюсам клетки и участвуют в образовании митотического веретена.

Прометафаза . Ядерная оболочка распадается на мелкие фрагменты. В области центромер появляются кинетохоры, функционирующие как центры организации кинетохорных микротрубочек. Отхождение кинетохор от каждой хромосомы в обе стороны и их взаимодействие с полюсными микротрубочками митотического веретена – причина перемещения хромосом.

Метафаза . Хромосомы располагаются в области экватора веретена. Образуется метафазная пластинка, в которой каждая хромосома удерживается парой кинетохоров и связанными с ними кинетохорными микротрубочками, направленными к противоположным полюсам митотического веретена.

Анафаза – расхождение дочерних хромосом к полюсам митотического веретена со скоростью 1 мкм/мин.

Телофаза . Хроматиды подходят к полюсам, кинетохорные микротрубочки исчезают, а полюсные продолжают удлиняться. Образуется ядерная оболочка, появляется ядрышко.

Цитокинез – разделение цитоплазмы на две обособляющиеся части. Процесс начинается в поздней анафазе или в телофазе. Плазмолемма втягивается между двумя дочерними ядрами в плоскости, перпендикулярной длинной оси веретена. Борозда деления углубляется, и между дочерними клетками остается мостик – остаточное тельце. Дальнейшее разрушение этой структуры приводит к полному разделению дочерних клеток.

Регуляторы клеточного деления

Пролиферация клеток, происходящая путем митоза, жестко регулируется множеством молекулярных сигналов. Скоординированная деятельность этих многочисленных регуляторов клеточного цикла обеспечивает как переход клеток от фазы к фазе клеточного цикла, так и точное выполнение событий каждой фазы. Главная причина появления пролиферативно неконтролируемых клеток – мутации генов, кодирующих структуру регуляторов клеточного цикла. Регуляторы клеточного цикла и митоза подразделяют на внутриклеточные и межклеточные. Внутриклеточные молекулярные сигналы многочисленны, среди них в первую очередь следует назвать собственно регуляторы клеточного цикла (циклины, циклин-зависимые протеинкиназы, их активаторы и ингибиторы) и онкосупрессоры.

МЕЙОЗ

В ходе мейоза образуются гаплоидные гаметы.

Первое деление мейоза

Первое деление мейоза (профаза I, метафаза I, анафаза I и телофаза I) – редукционное.

Профаза I последовательно проходит несколько стадий (лептотена, зиготена, пахитена, диплотена, диакинез).

Лептотена – хроматин конденсируется, каждая хромосома состоит из двух хроматид, соединенных центромерой.

Зиготена – гомологичные парные хромосомы сближаются и вступают в физический контакт (синапсис ) в виде синаптонемального комплекса, обеспечивающего конъюгацию хромосом. На этой стадии две лежащие рядом пары хромосом образуют бивалент.

Пахитена – хромосомы утолщаются вследствие спирализации. Отдельные участки конъюгировавших хромосом перекрещиваются друг с другом и образуют хиазмы. Здесь происходит кроссинговер - обмен участками между отцовскими и материнскими гомологичными хромосомами.

Диплотена – разделение конъюгировавших хромосом в каждой паре в результате продольного расщепления синаптонемального комплекса. Хромосомы расщепляются по всей длине комплекса, за исключением хиазм. В составе бивалента четко различимы 4 хроматиды. Такой бивалент называют тетрадой. В хроматидах появляются участки раскручивания, где синтезируется РНК.

Диакинез. Продолжаются процессы укорочения хромосом и расщепления хромосомных пар. Хиазмы перемещаются к концам хромосом (терминализация). Разрушается ядерная мембрана, исчезает ядрышко. Появляется митотическое веретено.

Метафаза I . В метафазе I тетрады образуют метафазную пластинку. В целом отцовские и материнские хромосомы распределяются случайным образом по ту или другую сторону экватора митотического веретена. Подобный характер распределения хромосом лежит в основе второго закона Менделя, что (наряду с кроссинговером) обеспечивает генетические различия между индивидуумами.

Анафаза I отличается от анафазы митоза тем, что при митозе к полюсам расходятся сестринские хроматиды. В эту фазу мейоза к полюсам отходят целостные хромосомы.

Телофаза I не отличается от телофазы митоза. Формируются ядра, имеющие 23 конъюгированные (удвоенные) хромосомы, происходит цитокинез, образуются дочерние клетки.

Второе деление мейоза.

Второе деление мейоза – эквационное – протекает так же, как митоз (профаза II, метафаза II, анафаза II и телофаза), но значительно быстрее. Дочерние клетки получают гаплоидный набор хромосом (22 аутосомы и одну половую хромосому).

ГОУВПО

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

КАФЕДРА СИСТЕМНОГО АНАЛИЗА И УПРАВЛЕНИЯ В МЕДИЦИНСКИХ СИСТЕМАХ

РЕФЕРАТ

ПО ДИСЦИПЛИНЕ: «Биология человека и животных»

НА ТЕМУ: «Митотический цикл. Клеточный цикл, фазы M, G1, S, G2, ауто- и гетеросинтетические функции клеток»

Выполнил: студент 1 курса группы БМ-101 Тонких М. А.

Проверил: профессор, доктор мед. Наук Л. Б. Дмитренко

ВОРОНЕЖ 2010

Клеточный цикл: общие сведения

Повторяющаяся совокупность событий, обеспечивающих деление эукариотических клеток, получила название клеточного цикла. Продолжительность клеточного цикла зависит от типа делящихся клеток. Некоторые клетки, например, нейроны человека, после достижения стадии терминальной дифференцировки прекращают свое деление вообще. Клетки легких, почек или печени во взрослом организме начинают делиться лишь в ответ на повреждение соответствующих органов. Клетки эпителия кишечника делятся на протяжении всей жизни человека. Даже у быстро пролиферирующих клеток подготовка к делению занимает около 24 ч. Клеточный цикл разделяют на стадии: Митоз - М-фаза, деление клеточного ядра. G1 -фаза период перед синтезом ДНК. S-фаза - период синтеза (репликации ДНК). G2-фаза - период между синтезом ДНК и митозом. Интерфаза - период, включающий в себя G1 -, S- и G2-фазы. Цитокинез - деление цитоплазмы. Точка рестрикции, R-point - время в клеточном цикле, когда продвижение клетки к делению становится необратимым. G0 фаза - состояние клеток, достигших монослоя или лишенных фактора роста в ранней G1 фазе.

митозумейозу) предшествует удвоение хромосом, которое происходит в периоде S клеточного цикла. Период обозначают первой буквой слова synthesis - синтез ДНК. С момента окончания периода S до завершения метафазы ядро содержит в четыре раза больше ДНК, чем ядро сперматозоида или яйцеклетки, а каждая хромосома состоит из двух идентичных сестринских хроматид.

Во время митоза хромосомы конденсируются и в конце профазы или начале метафазы становятся различимыми при оптической микроскопии. Для цитогенетического анализа обычно используют препараты именно метафазных хромосом.

В начале анафазы центромеры гомологичных хромосом разъединяются, и хроматиды расходятся к противоположным полюсам митотического веретена. После того как к полюсам отойдут полные наборы хроматид (с этого момента их называют хромосомами), вокруг каждого из них образуется ядерная оболочка, формируя ядра двух дочерних клеток (разрушение ядерной оболочки материнской клетки произошло в конце профазы ). Дочерние клетки вступают в период G1 , и только при подготовке к следующему делению они переходят в период S и в них происходит репликация ДНК.

Клетки со специализированными функциями, длительное время не вступающие в митоз или вообще утратившие способность к делению, находятся в состоянии, называемом периодом G0 .

Большинство клеток в организме диплоидные - то есть имеют два гаплоидных набора хромосом (гаплоидный набор - это число хромосом в гаметах, у человека он составляет 23 хромосомы, а диплоидный набор хромосом - 46).

В гонадах предшественники половых клеток сначала претерпевают ряд митотических делений, а затем вступают в мейоз - процесс образования гамет, состоящий из двух последовательных делений. В мейозе гомологичные хромосомы спариваются (отцовская 1-я хромосома с материнской 1-й хромосомой и т. д.), после чего в ходе так называемого кроссинговера происходит рекомбинация, то есть обмен участками между отцовской и материнской хромосомами. В результате качественно изменяется генетический состав каждой из хромосом.

В первом делении мейоза расходятся гомологичные хромосомы (а не сестринские хроматиды, как в митозе ), вследствие чего образуются клетки с гаплоидным набором хромосом, каждая из которых содержит по 22 удвоенные аутосомы и одной удвоенной половой хромосоме.

Между первым и вторым делениями мейоза нет периода S ( рис. 66.2 , справа), а в дочерние клетки во втором делении расходятся сестринские хроматиды. В итоге образуются клетки с гаплоидным набором хромосом, в которых вдвое меньше ДНК, чем в диплоидных соматических клетках в периоде G1, и в 4 раза меньше - чем в соматических клетках по окончании периода S.

При оплодотворении число хромосом и содержание ДНК у зиготы становится таким же, как в соматической клетке в периоде G1.

Период S в зиготе открывает путь к регулярному делению, характерному для соматических клеток.

Клеточный цикл: фазы

Клеточный цикл эукариот разделяют на четыре фазы. В стадии непосредственного деления клеток (митоза) конденсированные метафазные хромосомы поровну распределяются между дочерними клетками ( M-фаза клеточного цикла - mitosis ). Митоз был первой идентифицированной фазой клеточного цикла, а все остальные события, происходящие в клетке между двумя митозами, были названы интерфазой . Развитие исследований на молекулярном уровне позволило выделить в интерфазе стадию синтеза ДНК, получившую название S-фазы (synthesis) . Эти две ключевые стадии клеточного цикла не переходят непосредственно одна в другую. После окончания митоза до начала синтеза ДНК имеет место G1-фаза клеточного цикла (gap) , кажущаяся пауза в активности клетки, во время которой внутриклеточные синтетические процессы подготавливают репликацию генетического материала.

Второй перерыв в видимой активности ( фаза G2 ) наблюдается после окончания синтеза ДНК перед началом митоза. В фазе G2 клетка осуществляет контроль за точностью произошедшей редупликации ДНК и исправляет обнаруженные сбои. В ряде случаев выделяют пятую фазу клеточного цикла ( G0 ), когда после завершения деления клетка не вступает в следующий клеточный цикл и длительное время остается в состоянии покоя. Из этого состояния она может быть выведена внешними стимулирующими (митогенными) воздействиями.

Фазы клеточного цикла не имеют четких временных и функциональных границ, однако при переходе от одной фазы к другой происходит упорядоченное переключение синтетических процессов, позволяющее на молекулярном уровне дифференцировать эти внутриклеточные события.

Циклины и циклин-зависимые киназы

Клетки вступают в клеточный цикл и осуществляют синтез ДНК в ответ на внешние митогенные стимулы. Лимфокины (например, интерлейкины ), цитокины (в частности интерфероны ) и полипептидные факторы роста, взаимодействуя со своими рецепторами на поверхности клеток, индуцируют каскад реакций фосфорилирования внутриклеточных белков, сопровождающихся передачей сигнала от поверхности клеток к ядру и индукцией транскрипции соответствующих генов. Одними из первых активируются гены, кодирующие белки циклины , получившие свое название от того, что их внутриклеточная концентрация периодически изменяется по мере прохождения клеток через клеточный цикл, достигая максимума на его определенных стадиях. Циклины являются специфическими активаторами семейства циклин-зависимых протеинкиназ (CDK) ( CDK - cyclin-dependent kinases ) - ключевых участников индукции транскрипции генов, контролирующих клеточный цикл. Активация индивидуальной CDK происходит после ее взаимодействия со специфическим циклином, и образование этого комплекса становится возможным после достижения циклином критической концентрации. В ответ на уменьшение внутриклеточной концентрации конкретного циклина происходит обратимая инактивация соответствующей CDK. Некоторые CDK активируются более чем одним циклином. В этом случае группа циклинов, как бы передавая протеинкиназы друг другу, поддерживает их в активированном состоянии длительное время. Такие волны активации CDK возникают на протяжении G1- и S- фаз клеточного цикла.

Циклины: общие сведения

Каждый тип циклинов, обозначенных от A до H, имеет гомологичный участок (150 аминокислотных остатков, называемый " циклиновый бокс ". Этот участок отвечает за связывание с CDK . В семействе циклинов (циклин A - циклин J) известны 14 белков. Некоторые члены семейства составляют подсемейства. Например, подсемейство циклинов D-типа состоит из трех членов: D1, D2 и D3.Циклины делят на два подсемейства: G1-циклины ( C , D и E ) и митотические циклины ( A и B ).

Циклины относятся к быстро обменивающимся белкам с коротким временем полужизни, которое составляет у циклинов D-типа 15-20 мин. Это обеспечивает динамизм их комплексов с циклинзависимыми киназами . За внутриклеточную деградацию циклинов отвечает N-концевая последовательность аминокислотных остатков, названная боксом деструкции (destruction box) . При прохождении клеток через клеточный цикл вслед за активацией отдельных CDK по мере необходимости происходит их инактивация. В последнем случае имеет место протеолитическая деградация циклина, находящегося в комплексе с CDK, которая начинающается с бокса деструкции.

Сами по себе циклины не могут полностью активировать соответствующие CDK. Для завершения процесса активации должно произойти специфическое фосфорилирование и дефосфорилирование определенных остатков аминокислот в полипептидных цепях этих протеинкиназ. Большую часть таких реакций осуществляет киназа, активирующая CDK (CAK - CDK activating kinase) , которая представляет собой комплекс CDK7 с циклином H . Таким образом, CDK становятся способными выполнять свои функции в клеточном цикле лишь после их взаимодействия с соответствующими циклинами и осуществления посттрансляционных модификаций под действием CAK и других аналогичных белков-регуляторов клеточного цикла.

Деление эукариотической клетки: начало

В ответ на митогенный стимул клетка, находящаяся в фазе G0 или ранней G1 , начинает свое прохождение через клеточный цикл. В результате индукции экспрессии генов циклинов D и E , которые обычно объединяют в группу циклинов G1 , происходит увеличение их внутриклеточной концентрации. Циклины D1 , D2 и D3 образуют комплекс с киназами CDK4 и CDK6 . В отличие от циклина D1 два последних циклина, кроме того, объединяются с CDK2 . Функциональные различия между этими тремя циклинами неизвестны, однако имеющиеся данные указывают на достижение ими критических концентраций при разных стадиях развития фазы G1. Эти различия специфичны в отношении типа пролиферирующих клеток.

Активация CDK2/4/6 приводит к фосфорилированию белка RB (продукта гена ретинобластомы pRb ) и ассоциированных с ним белков p107 и p130 . В начале фазы G1 белок pRb фосфорилирован слабо, что позволяет ему находиться в комплексе с фактором транскрипции E2F , играющим ключевую роль в индукции синтеза ДНК, и блокировать его активность. Полностью фосфорилированная форма pRb освобождает E2F из комплекса, что приводит к активации транскрипции генов, контролирующих репликацию ДНК.

Концентрация D-циклинов возрастает на протяжении фазы G1 клеточного цикла и достигает максимума значений непосредственно перед началом S-фазы , после чего начинает уменьшаться. Однако в это время pRb еще фосфорилирован не полностью, и фактор E2F остается в комплексе в неактивном состоянии. Фосфорилирование pRb завершается под действием CDK2, активированной циклином E . Внутриклеточная концентрация последнего становится максимальной в момент перехода клеточного цикла от фазы G1 к S-фазе. Таким образом, комплекс циклин E-CDK2 как бы принимает эстафету от комплексов циклина D с CDK4 и CDK6 и завершает фосфорилирование pRb, сопровождающееся освобождением активного фактора транскрипции E2F. В результате начинается синтез ДНК, то есть клетка вступает в S-фазу клеточного цикла.

S фаза клеточного цикла: синтез ДНК

Период интерфазы , когда происходит репликация ДНК клеточного ядра, был назван "фаза S "

Делению клетки (митозу или мейозу) предшествует удвоение хромосом, которое происходит в периоде S клеточного цикла ( рис. 66.2 ). Период обозначают первой буквой слова synthesis - синтез ДНК.

После вступления клетки в S-фазу происходит быстрая деградация циклина E и активация CDK2 циклином A . Циклин E начинает синтезироваться в конце фазы G1 и его взаимодействие с CDK2 является необходимым условием для вступления клетки в S-фазу и продолжения синтеза ДНК. Этот комплекс активирует синтез ДНК через фосфорилирование белков в областях начала репликации. Сигналом к завершению S-фазы и переходу клетки к фазе G2 является активация циклином A другой киназы CDK1 с одновременным прекращением активации CDK2. Задержка между окончанием синтеза ДНК и началом митоза (фаза G2) используется клеткой для контроля полноты и точности произошедшей репликации хромосом. Последовательность событий в этот период точно не известна.

При стимуляции факторами роста клеток млекопитающих, находящихся в состоянии пролиферативного покоя , циклины D -типа появляются раньше, чем циклин E. мРНК и белок циклина D1 впервые появляются через 6-8 часов, после чего уровень D1 остается повышенным до конца клеточного цикла ( Matsushime H. et al., 1991 ; Won K.A. et al., 1992 ).

Когда из среды убирают ростовые факторы, уровень циклинов D-типа стремительно падает, так как D-циклины и их РНК нестабильны.

Циклин D1 ассоциируется с CDK4 непосредственно перед началом синтеза ДНК. Уровень содержания комплекса достигает пика в ранней S-фазе, прежде чем снизиться в поздней S и в G2-фазе ( Matsushime H. et al., 1992 ).

По-видимому, циклины D2 и D3 действуют в G1-периоде несколько позже, чем циклин D1.

Гиперэкспрессия циклинов D-типа (пятикратная по отношению к нормальной) при снижении потребности клеток в факторах роста и укорочении G1-фазы приводит к уменьшению размеров клетки. Циклин E необходим клеткам для вступления в S-фазу . Он связывается преимущественно с CDK2 , хотя может образовывать комплекс и с CDK1 .

Уровень мРНК и белка циклина E, а также активность комплекса циклин-E-CDK2 достигают максимума при переходе G1-S и резко снижаются, когда клетки проходят среднюю и позднюю S-фазы.

При микроинъекции антител к циклину E в клетки млекопитающих в них происходит подавление синтеза ДНК.

При гиперэкспрессии циклина E клетки быстрее проходят G1-фазу и вступают в S, и таким клеткам требуется меньшее количество факторов роста.

Митоз: инициация

Сигнал к началу деления клетки (митоза) исходит от фактора MPF (M phase promoting factor) , стимулирующего M-фазу клеточного цикла. MPF представляет собой комплекс киназы CDK1 с активирующими ее циклинами A или B . Видимо, комплекс CDK1-циклин A играет более важную роль в завершении S- фазы и подготовке клетки к делению, тогда как комплекс CDK1- циклин B преимущественно осуществляет контроль последовательности.

Циклины B1 и B2 присутствуют в очень малых концентрациях в фазе G1 . Их концентрация начинает увеличиваться в конце S- и на протяжении G2-фаз , достигая своего максимума во время митоза, что приводит к замещению ими циклина A в комплексе с CDK1 . Однако этого оказывается недостаточным для полной активации протеинкиназы. Функциональная компетентность CDK1 достигается после серии ее фосфорилирований и дефосфорилирований по специфическим остаткам аминокислот. Такой контроль необходим для предотвращения вступления клеток в митоз до полного завершения синтеза ДНК.

Деление клетки начинается только после того, как CDK1, находящаяся в комплексе с циклином B, фосфорилируется по остаткам Thr-14 и Tyr-16 протеинкиназой WEE1 , а также по остатку Thr-161 протеинкиназой CAK и затем дефосфорилируется по остаткам Thr-14 и Tyr-15 фосфатазой CDC25 . Активированная таким образом CDK1 фосфорилирует в ядре структурные белки, в том числе нуклеолин , ядерные ламины и виментин . После этого ядро начинает проходить через цитологически хорошо различимые стадии митоза.

Первая стадия митоза - профаза - начинается после того, как CDK1 полностью фосфорилируется, за ней следуют метафаза , анафаза и телофаза , завершающиеся делением клетки - цитокинезом . Следствием этих процессов является правильное распределение реплицированных хромосом, ядерных и цитоплазматических белков, а также других высокомолекулярных и низкомолекулярных соединений в дочерние клетки. После завершения цитокинеза происходит разрушение циклина B , сопровождаемое инактивацией CDK1, что приводит к вступлению клетки в фазу G1 или G0 клеточного цикла.

Фаза G0 клеточного цикла

Клетки некоторых типов на определенных стадиях дифференцировки могут прекращать свое деление, полностью сохраняя свою жизнеспособность. Такое состояние клеток получило название фазы G0. Клетки, достигшие состояния терминальной дифференцировки, уже не могут выйти из этой фазы. В то же время клетки, для которых характерна чрезвычайно низкая способность к делению, например, гепатоциты, могут снова вступать в клеточный цикл после удаления части печени.

Переход клеток в состояние покоя становится возможным благодаря функционированию высокоспецифических ингибиторов клеточного цикла . При участии этих белков клетки могут прекращать пролиферацию в неблагоприятных условиях окружающей среды, при повреждении ДНК или появлении грубых ошибок ее репликации. Такие паузы используются клетками для репарации возникших повреждений.

При некоторых внешних условиях клеточный цикл может приостановится в точках рестрикции . В этих точках клетки становятся коммитированными к вступлению в S-фазу и/или в митоз.

Клетки позвоночных в стандартной культуральной среде, лишенной сыворотки , в большинстве случаев не вступают в S-фазу , хотя среда содержит все необходимые питательные вещества.

При достижении сомкнутого монослоя клетки, способные к контактному торможению , выходят из клеточного цикла даже в присутствии сыворотки крови . Клетки, которые вышли из митотического цикла на неопределенное время, сохраняя жизнеспособность и пролиферативный потенциал, называют покоящимися клетками. Это называется переходом в состояние пролиферативного покоя или в G0-фазу.

В 90-х гг. не прекращались дискуссии, можно ли состояние пролиферативного покоя определить как фазу, принципиально отличную от G1. По-видимому это действительно так.

В ядрах клеток, находящихся в пролиферативном покое, также как и в клетках, находящихся в G1-фазе , как правило содержится неудвоенное количество ДНК. Однако между клетками в этих двух состояниях имеются существенные различия. Известно, что продолжительность G1-фазы у делящихся клеток значительно короче, чем время перехода G0-S. В многочисленных работах по слиянию покоящихся и пролиферирующих клеток и по микроинъекции мРНК показано, что клетки в G0-фазе содержат ингибиторы пролиферации , препятствующие вступлению в S-фазу.

Эти факты предполагают, что клетка должна осуществлять специальную программу для выхода из G0. Необходимо отметить также, что в покоящихся клетках не экспрессируются CDK2 и CDK4 , а также циклины D - и E-типов . Их синтез индуцируется только факторами роста ( Lodish H. et al., 1995 ). В постоянно циклирующих клетках уровень D- и E-циклинов остается высоким на протяжении всего цикла, и продолжительность G1-периода по сравнению с пререпликативным периодом уменьшается.

Таким образом, в клетках, находящихся в G0-фазе, отсутствуют белки, разрешающие проход через точки рестрикции и позволяющие вступать в S-фазу. Для перехода покоящихся клеток в S-фазу факторы роста должны индуцировать в них синтез этих белков.

Клеточный цикл: ингибиторы

В клеточном цикле имеются две основные стадии (точки перехода, контрольные точки R - restriction points ), на которых могут быть реализованы негативные регуляторные воздействия , останавливающие продвижение клеток через клеточный цикл. Одна из этих стадий контролирует переход клетки к синтезу ДНК, а другая - начало митоза. Имеются и другие регулируемые этапы клеточного цикла.

Переход клеток от одной фазы клеточного цикла к другой контролируется на уровне активации CDK их циклинами с участием ингибиторов циклинзависимых киназ CKI . По мере необходимости эти ингибиторы могут активироваться и блокировать взаимодействие CDK со своими циклинами, а следовательно, и клеточный цикл как таковой. После изменения внешних или внутренних условий клетка может продолжить пролиферацию или вступить на путь апоптоза .

Имеется две группы CKI: белки семейств p21 и INK4 (inhibitor of CDK4) , члены которых внутри семейств обладают похожими структурными свойствами. Семейство ингибиторов p21 включает в себя три белка: p21 , p27 и p57 . Поскольку эти белки были описаны независимо несколькими группами, до сих пор используются их альтернативные названия. Так, белок p21 известен также под именами WAF1 (wild-type p53 activated fragment 1) , CIP1 (CDK2 interacting protein 1) , SDI1 (senescent derived inhibitor 1) и mda-6 (melanoma differentiation associated gene) . Синонимами p27 и p57 являются соответственно KIP1 (kinase inhibiting proteins 1) и KIP2 (kinase inhibiting proteins 2) . Все эти белки обладают широкой специфичностью действия и могут ингибировать различные CDK .

В отличие от этого группа ингибиторов INK4 более специфична. В нее входят четыре белка: p15INK4B , p16INK4A , p18INK4C и p19INK4D . Ингибиторы семейства INK4 функционируют во время фазы G1 клеточного цикла, подавляя активность киназы CDK4 , однако второй белковый продукт гена INK4A - p19ARF , взаимодействует с регуляторным фактором MDM2 белка p53 и инактивирует фактор. Это сопровождается увеличением стабильности белка p53 и остановкой

Клеточный цикл: регуляция перехода от G1- к S-фазе

До начала клеточного цикла белок p27 , находясь в высокой концентрации, предотвращает активацию протеинкиназ CDK4 или CDK6 циклинами D1 , D2 или D3 . В таких условиях клетка остается в фазе G0 или ранней фазе G1 до получения митогенного стимула. После адекватной стимуляции происходит уменьшение концентрации ингибитора p27 на фоне возрастания внутриклеточного содержания циклинов D. Это сопровождается активацией CDK и, в конечном счете, фосфорилированием белка pRb , освобождением связанного с ним фактора транскрипции E2F и активацией транскрипции соответствующих генов.

На этих ранних стадиях фазы G1 клеточного цикла концентрация белка p27 все еще остается довольно высокой. Поэтому после прекращения митогенной стимуляции клеток содержание этого белка быстро восстанавливается до критического уровня и дальнейшее прохождение клеток через клеточный цикл блокируется на соответствующем этапе G1. Эта обратимость возможна до тех пор, пока фаза G1 в своем развитии не достигает определенной стадии, называемой точкой перехода , после прохождения которой клетка становится коммитированной к делению, и удаление факторов роста из окружающей среды не сопровождается ингибированием клеточного цикла. Хотя с этого момента клетки становятся независимыми от внешних сигналов к делению, они сохраняют способность к самоконтролю клеточного цикла.

Ингибиторы CDK семейства INK4 ( p15 , p16 , p18 и p19 ) специфически взаимодействуют с киназами CDK4 и CDK6 . Белки p15 и p16 идентифицированы как супрессоры опухолевого роста, и их синтез регулируется белком pRb . Все четыре белка блокируют активацию CDK4 и CDK6, либо ослабляя их взаимодействие с циклинами, либо вытесняя их из комплекса. Хотя оба белка p16 и p27 обладают способностью ингибировать активность CDK4 и CDK6, первый имеет большее сродство к этим протеинкиназам. Если концентрация p16 повышается до уровня, при котором он полностью подавляет активность киназ CDK4/6, белок p27 становится основным ингибитором киназы CDK2 .

На ранних стадиях клеточного цикла здоровые клетки могут распознавать повреждения ДНК и реагировать на них задержкой прохождения клеточного цикла в фазе G1 до репарации повреждений. Например, в ответ на повреждения ДНК, вызванные ультрафиолетовым светом или ионизирующей радиацией, белок p53 индуцирует транскрипцию гена белка p21 . Повышение его внутриклеточной концентрации блокирует активацию CDK2 циклинами E или A . Это останавливает клетки в поздней фазе G1 или ранней S-фазе клеточного цикла. В это время клетка сама определяет свою дальнейшую судьбу - если повреждения не могут быть устранены, она вступает в апоптоз .

Существуют две разнонаправленные системы регуляции G1/S - перехода: положительная и отрицательная.

Система положительно регулирующая вход в S-фазу, включает гетеродимер E2F-1/DP-1 и активирующие его циклин-киназные комплексы .

Другая система тормозит вход в S-фазу. Она представлена опухолевыми супрессорами р53 и pRB , которые подавляют активность гетеродимеров E2F-1/DP-1.

Нормальная пролиферация клеток зависит от точного баланса между этими системами. Соотношение между этими системами может изменяться, приводя к изменению скорости пролиферации клеток.

Клеточный цикл: регуляция перехода от G2 к фазе M

Ответ клетки на повреждения ДНК может наступить перед началом митоза . Тогда белок p53 индуцирует синтез ингибитора p21 , который предотвращает активацию

киназы CDK1 циклином B и задерживает дальнейшее развитие клеточного цикла. Прохождение клетки через митоз жестко контролируется - последующие стадии не начинаются без полного завершения предыдущих. Некоторые из ингибиторов были идентифицированы у дрожжей, но их гомологи у животных пока остаются неизвестными. Например, описаны белки дрожжей BUB1 (budding uninhibited by benomyl) и MAD2 (mitotic arrest deficient) , которые контролируют присоединение конденсированных хромосом к митотическому веретену в метафазе митоза . До завершения правильной сборки этих комплексов белок MAD2 образует комплекс с протеинкиназой CDC20 и инактивирует ее. CDC20 после активации фосфорилирует белки и в результате блокирует те их функции, которые препятствуют расхождению каждой из двух гомологичных хроматид во время цитокинеза .

Заключение

В опытах с температурно-зависимыми мутантами дрожжей и клеточных линий млекопитающих показано, что протекание митоза обусловливается активацией определённых генов и синтезом специфичных РНК и белка. Иногда митоз считают только деление ядра (кариокинез), которое не всегда сопровождается цитотомией - образованием двух отд. клеток.
Таким образом, в результате митоза из одной клетки получаются две, каждая из которых имеет характерно для данного вида организма число и форму хромосом, а, следовательно, постоянное количество ДНК.
Биологическое значение митоза заключается в том, что он обеспечивает постоянство числа хромосом во всех клетках организма. В процессе митоза происходит распределение ДНК хромосом материнской клетки строго поровну между возникающими из нее двумя дочерними клетками. В результате митоза все клетки тела, кроме половых, получают одну и ту же генетическую информацию. Такие клетки называются соматическими (от греческого "сома" - тело). цикла ). Клеточный цикл - это период... Митотический цикл включает в себя митоз,а также период покоя (G0), постмитотический (G1 ), синтетический (S) и предмитотический(G2 ... . Постмитотический период (G1 ). Фаза G1 – это основное...

  • Существование клеток во времени и пространстве. Клеточный цикл и его регуляция

    Контрольная работа >> Биология

    Деления или гибели. Митотический и жизненный цикл совпадают в часто делящихся... (30-40% клеточного цикла ) усиливается. После G1 фазы начинается S фаза . Происходит точная... . Пострепродуктивная репарация происходит в G2 фазе . В G2 фазе (10-20%) происходит синтез...

  • Жизненный (клеточный ) цикл

    Доклад >> Биология

    Называется жизненным, или клеточным циклом . Вновь появившаяся клетка... митотическим . В свою очередь интерфаза включает три периода: пресинтетический – G1 , синтетический – S и постсинтетический - G2 . В пресинтетический (G1 ... этой фазы примерно 4 часа.

  • История развития и основные достижения современной генетики

    Реферат >> Медицина, здоровье

    Временная организация клетки. Клеточный и митотический циклы . Клеточный цикл – это период... Пресинтетический (постмитотический) G1 – продолжительность от... . в) Постсинтетический период G2 – продолжительность меньше, ... подразделяют на 4 фазы : профазу, метафазу, ...

  • Для того чтобы клетка смогла полноценно разделиться, она должна увеличиться в размерах и создать достаточное количество органоидов. А для того чтобы не растерять наследственную информацию при делении пополам, она должна изготовить копии своих хромосом. И, наконец, для того чтобы распределить наследственную информацию строго поровну между двумя дочерними клеткам, она должна в правильном порядке расположить хромосомы перед их распределением по дочерним клеткам. Все эти важные задачи решаются в процессе клеточного цикла.

    Клеточный цикл имеет важное значение, т.к. он демонстрирует важнейшие : способность к размножению, росту и дифференцировке. Обмен тоже идёт, но его не рассматривают при изучении клеточного цикла.

    Определение понятия

    Клеточный цикл - это период жизни клетки от рождения до образования дочерних клеток.

    У животных клеток клеточный цикл, как промежуток времени между двумя делениями (митозами), длится в среднем от 10 до 24 часов.

    Клеточный цикл состоит из нескольких периодов (синоним: фазы), которые закономерно сменяют друг друга. В совокупности первые фазы клеточного цикла (G 1 , G 0 , S и G 2) носят название интерфазы , а последняя фаза называется .

    Рис. 1. Клеточный цикл.

    Периоды (фазы) клеточного цикла

    1. Период первого роста G1 (от английского Growth - рост), составляет 30-40% цикла, и период покоя G 0

    Синонимы: постмитотический (наступает после митоза) период, пресинтетический (проходит перед синтезом ДНК) период.

    Клеточный цикл начинается от рождения клетки в результате митоза. После деления дочерние клетки уменьшены в размерах и органоидов в них меньше, чем в норме. Поэтому "новорожденная" маленькая клетка в первом периоде (фазе) клеточного цкла (G 1) растёт и увеличивается в размерах, а также формирует недостающие органоиды. Идёт активный синтез белков, необходимых для ввсего этого. В результате клетка становится полноценной, можно сказать, "взрослой".

    Чем обычно заканчивается для клетки период роста G 1 ?

    1. Вступллением клетки в процесс . За счёт дифференцировки клетка приобретает специальные особенности для выполнения функций, необходимых всему органу и организму. Запускается дифференцировка управляющими веществами (гормонами), воздействующими на соответствующие молекулярные рецепторы клетки. Клетка, завершившая свою дифференцировку, выпадает из круговорота делений и находится в периоде покоя G 0 . Требуется воздействие активирующих веществ (митогенов) для того, чтобы она претерпела дедифференцировку и вновь вернулась в клеточный цикл.
    2. Гибелью (смертью) клетки.
    3. Вступлением в следующий период клеточного цикла -синтетический.

    2. Синтетический период S (от английского Synthesis - синтез), составляет 30-50% цикла

    Понятие синтеза в названии этого периода относится к синтезу (репликации) ДНК , а не к каким-либо другим процессам синтеза. Достигнув определенного размера в результате прохождения периода первого роста, клетка вступает в синтетический период, или фазу, S, в котором происходит синтез ДНК. За счёт репликации ДНК клетка удваивает свой генетический материал (хромосомы), т.к. в ядре образуется точная копия каждой хромосомы. Каждая хроммосома становится двойной и весь хромосомный набор становится двойным, или диплоидным . В результате клетка теперь готова поделить наследственный материал поровну между двумя дочерними клетками, не потеряв при этом ни одного гена.

    3. Период второго роста G 2 (от английского Growth - рост), составляет 10-20% цикла

    Синонимы: премитотический (проходит перед митозом) период, постсинтетический (наступает после синтетического) период.

    Период G 2 является подготовительным к очередному делению клетки. Во время второго периода роста G 2 клетка производит белки, требующиеся для митоза, в частности, тубулин для веретена деления; создаёт запас энергии в виде АТФ; проверяет, закончена ли репликация ДНК, и готовится к делению.

    4. Период митотического деления M (от английского Mitosis - митоз), составляет 5-10% цикла

    После деления клетка оказывается в новой фазе G 1 , и клеточный цикл завершается.

    Регуляция клеточного цикла

    На молекулярном уровне переход от одной фазы цикла к другой регулируют два белка - циклин и циклинзависимая киназа (CDK).

    Для регуляции клеточного цикла используется процесс обратимого фосфорилирования/дефосфорилирования регуляторных белков, т.е. присоединение к ним фосфатов с последующим отщеплением. Ключевым веществом, регулирующим вступление клетки в митоз (т.е. её переход от фазы G 2 к фазе M), является специфическая серин/треонин-протеинкиназа , которая носит название фактор созревания - ФС, или MPF, от английского maturation promoting factor. В активной форме этот белковый фермент катализирует фосфорилирование многих белков, принимающих участие в митозе. Это, например, входящий в состав хроматина гистон H 1 , ламин (компонент цитоскелета, находящийся в ядерной мембране), факторы транскрипции, белки митотического веретена, а также ряд ферментов. Фосфорилирование этих белков фактором созревания MPF активирует их и запускает процесс митоза. После завершения митоза регуляторная субъединица ФС, циклин , маркируется убиквитином и подвергается распаду (протеолизу). Теперь наступает очередь протеинфосфатаз , которые дефосфорилируют белки, принимавшие участие в митозе, чем переводят их в неактивное состояние. В итоге клетка возвращается в состояние интерфазы.

    ФС (MPF) - это гетеродимерный фермент, включающий в себя регуляторную субъединицу, а именно циклин, и каталитическую субъединицу, а именно циклинзависимую киназу ЦЗК (CDK от англ. cyclin dependent kinase), она же p34cdc2; 34 кДа. Активной формой этого фермента является лишь димер ЦЗК+циклин. Кроме того, активность ЦЗК регулируется путем обратимого фосфорилирования самого фермента. Циклины получили такое название потому, что их концентрация циклически изменяется в соответствии с периодами клеточного цикла, в частности, она снижается перед началом деления клетки.

    В клетках позвоночных присутствует ряд различных циклинов и циклинзависимых киназ. Разнообразные сочетания двух субъединиц фермента регулируют запуск митоза, начало процесса транскрипции в G1-фазе, переход критической точки после завершения транскрипции, начало процесса репликации ДНК в S-периоде интерфазы (стартовый переход) и другие ключевые переходы клеточного цикла (на схеме не приведены).
    В ооцитах лягушки вступление в митоз (G2/M-переход) регулируется путем изменения концентрации циклина. Циклин непрерывно синтезируется в интерфазе до достижения максимальной концентрации в фазе М, когда запускается весь каскад фосфорилирования белков, катализируемый ФС. К окончанию митоза циклин быстро разрушается протеиназами, также активируемыми ФС. В других клеточных системах активность ФС регулируется за счет различной степени фосфорилирования самого фермента.

    Среди всех интересных и достаточно сложных тем в биологии стоит выделить два процесса деления клеток в организме – мейоз и митоз . Сначала может показаться, что эти процессы одинаковые, поскольку в обоих случаях происходит деление клеток, но на самом деле между ними существует большая разница. В первую очередь, нужно разобраться с митозом. Что этот процесс из себя представляет, что такое интерфаза митоза и какую роль они играют в человеческом организме? Подробнее об этом и пойдет речь в данной статье.

    Сложный биологический процесс, который сопровождается делением клеток и распределением хромосом между этими клетками – все это можно сказать о митозе. Благодаря ему, между дочерними клетками организма равномерно распределяются хромосомы, в которых содержится ДНК.

    Существует 4 основные фазы процесса митоза. Все они связаны между собой, поскольку фазы плавно переходят из одной на другую. Распространенность митоза в природе обусловлена тем, что именно он участвует в процессе деления всех клеток, среди которых мышечные, нервные и так далее.

    Коротко об интерфазе

    Перед попаданием в состояние митоза клетка, которая разделяется, переходит в период интерфазы, то есть растет. Длительность интерфазы может занимать более 90% всего времени активности клетки в обычном режиме .

    Интерфаза делится на 3 основных периода:

    • фаза G1;
    • S-фаза;
    • фаза G2.

    Все они проходят в определенной последовательности. Рассмотрим каждую из этих фаз отдельно.

    Интерфаза — основные составляющие (формула)

    Фаза G1

    Этот период характеризуется подготовкой клетки к делению. Она увеличивается в объемах для дальнейшей фазы синтеза ДНК.

    S-фаза

    Это следующий этап в процессе интерфазы, при котором происходит деление клеток организма. Как правило, синтез большей части клеток происходит на небольшой промежуток времени. После деления клетки не увеличиваются в размерах, а начинается последняя фаза.

    Фаза G2

    Финальный этап интерфазы, на протяжении которого клетки продолжают синтезировать белки, увеличиваясь при этом в размерах. В этот период в клетке по-прежнему есть нуклеолы. Также в последней части интерфазы происходит дублирование хромосом, а поверхность ядра в это время покрывается специальной оболочкой, имеющей защитную функцию.

    На заметку! По завершению третьей фазы наступает митоз. Он тоже включает в себя несколько стадий, после которых происходит деление клетки (этот процесс в медицине называется цитокинезом).

    Стадии митоза

    Как уже отмечалось ранее, митоз делится на 4 стадии, но иногда их может быть и больше. Ниже представлены основные из них.

    Таблица. Описание основных фаз митоза.

    Название фазы, фото Описание

    Во время профазы происходит спирализация хромосом, в результате чего они принимают скрученную форму (она более компактная). Останавливаются все синтетические процессы в клетке организма, поэтому рибосомы уже не вырабатываются.

    Многие специалисты не выделяют прометафазу как отдельную фазу митоза. Нередко все процессы, которые в ней происходят, относят к профазе. В этот период цитоплазма окутывает хромосомы, которые свободно перемещаются по клетке до определенного момента.

    Следующая фаза митоза, которая сопровождается распределением на экваториальной плоскости конденсированных хромосом. В этот период происходит обновление микротрубочек на постоянной основе. При метафазе хромосомы расположены так, что их кинетохоры находятся в ином направлении, то есть направлены к противоположным полюсам.

    Данная фаза митоза сопровождается отделением хроматид каждой из хромосом друг от друга. Нарастание микротрубочек прекращается, они теперь начинают разбираться. Анафаза длится недолго, но за этот промежуток времени клетки успевают разойтись ближе к разным полюсам в примерно равном количестве.

    Это последняя стадия, на протяжении которой начинается деконденсация хромосом. Эукариотические клетки завершают свое деление, а вокруг каждого набора хромосом человека образовывается специальная оболочка. При сокращении сократительного кольца происходит разделение цитоплазмы (в медицине этот процесс называется цитотомией).

    Важно! Длительность полного процесса митоза, как правило, составляет не больше 1,5-2 часов. Продолжительность может меняться в зависимости от вида разделяемой клетки. Также на длительность процесса влияют и внешние факторы, такие как световой режим, температура и так далее.

    Какую биологическую роль играет митоз?

    Теперь попробуем разобраться с особенностями митоза и его важностью в биологическом цикле. В первую очередь, он обеспечивает многие процессы жизнедеятельности организма, среди которых – эмбриональное развитие .

    Также митоз отвечает за восстановление тканей и внутренних органов организма после различных видов повреждения, в результате чего происходит регенерация. В процессе функционирования клетки постепенно отмирают, но с помощью митоза структурная целостность тканей постоянно поддерживается.

    Митоз обеспечивает сохранение определенного количества хромосом (оно соответствует числу хромосом в материнской клетке).

    Видео – Особенности и виды митоза

    Рост тела человека обусловлен увеличением размера и количества клеток, при этом последнее обеспечивается процессом деления, или митозом. Пролиферация клеток происходит под воздействием внеклеточных факторов роста, а сами клетки проходят через повторяющуюся последовательность событий, известную как клеточный цикл.

    Различают четыре основные фазы : G1 (пресинтетическая), S (синтетическая), G2 (постсинтетическая) и М (митотическая). Затем следует разделение цитоплазмы и плазматической мембраны, в результате чего возникают две одинаковые дочерние клетки. Фазы Gl, S и G2 входят в состав интерфазы. Репликация хромосом происходит во время синтетической фазы, или S-фазы.
    Большинство клеток не подвержено активному делению, их митотическая активность подавляется во время фазы GO, входящей в состав фазы G1.

    Продолжительность М-фазы составляет 30-60 мин, в то время как весь клеточный цикл проходит примерно за 20 ч. В зависимости от возраста нормальные (не опухолевые) клетки человека претерпевают до 80 митотических циклов.

    Процессы клеточного цикла контролируются последовательно повторяющимися активацией и инактивацией ключевых ферментов, называемых цик дин зависимыми протеинкиназами (ЦЗК), а также их кофакторов - циклинов. При этом под воздействием фосфокиназ и фосфатаз происходят фосфорилирование и дефосфорилирование особых циклин-ЦЗК-комплексов, ответственных за начало тех или иных фаз цикла.

    Кроме того, на соответствующих стадиях подобные ЦЗК-белки вызывают уплотнение хромосом, разрыв ядерной оболочки и реорганизацию микротрубочек цитоскелета в целях формирования веретена деления (митотического веретена).

    G1-фаза клеточного цикла

    G1-фаза - промежуточная стадия между М- и S-фазами, во время которой происходит увеличение количества цитоплазмы. Кроме того, в конце фазы G1 расположена первая контрольная точка, на которой происходят репарация ДНК и проверка условий окружающей среды (достаточно ли они благоприятны для перехода к S-фазе).

    В случае если ядерная ДНК повреждена, усиливается активность белка р53, который стимулирует транскрипцию р21. Последний связывается со специфическим циклин-ЦЗК-комплексом, ответственным за перевод клетки в S-фазу, и тормозит её деление на стадии Gl-фазы. Это позволяет репарационным ферментам исправить повреждённые фрагменты ДНК.

    При возникновении патологий белка р53 репликация дефективной ДНК продолжается, что позволяет делящимся клеткам накапливать мутации и способствует развитию опухолевых процессов. Именно поэтому белок р53 часто называют «стражем генома».

    G0-фаза клеточного цикла

    Пролиферация клеток у млекопитающих возможна только при участии секретируемых другими клетками внеклеточных факторов роста , которые оказывают своё воздействие через каскадную сигнальную трансдукцию протоонкогенов. Если во время фазы G1 клетка не получает соответствующих сигналов, то она выходит из клеточного цикла и переходит в состояние G0, в котором может находиться несколько лет.

    Блок G0 происходит при помощи белков - супрессоров митоза, один из которых - ретинобластомный белок (Rb-белок), кодируемый нормальными аллелями гена ретинобластомы. Данный белок прикрепляется кособым регуляторным протеинам, блокируя стимуляцию транскрипции генов, необходимых для пролиферации клеток.

    Внеклеточные факторы роста разрушают блок путём активации Gl-специфических циклин-ЦЗК-комплексов , которые фосфорилируют Rb-белок и изменяют его конформацию, в результате чего разрывается связь с регуляторными белками. При этом последние активируют транскрипцию кодируемых ими генов, которые запускают процесс пролиферации.

    S фаза клеточного цикла

    Стандартное количество двойных спиралей ДНК в каждой клетке, соответствующее диплоидному набору одноцепочечных хромосом, принято обозначать как 2С. Набор 2С сохраняется на протяжении фазы G1 и удваивается (4С) во время S-фазы, когда синтезируется новая хромосомная ДНК.

    Начиная с конца S-фазы и до М-фазы (включая фазу G2) каждая видимая хромосома содержит две плотно связанные друг с другом молекулы ДНК, называемые сестринскими хроматидами. Таким образом, в клетках человека начиная с конца S-фазы и до середины М-фазы присутствуют 23 пары хромосом (46 видимых единиц), но 4С (92) двойные спирали ядерной ДНК.

    В процессе митоза происходит распределение одинаковых наборов хромосом по двум дочерним клеткам таким образом, чтобы в каждой из них содержалось по 23 пары 2С-молекул ДНК. Следует отметить, что фазы G1 и G0 - единственные фазы клеточного цикла, во время которых в клетках 46 хромосомам соответствует 2С-набор молекул ДНК.

    G2-фаза клеточного цикла

    Вторая контрольная точка , на которой проверяется размер клетки, находится в конце фазы G2, расположенной между S-фазой и митозом. Кроме того, на данной стадии, прежде чем перейти к митозу, происходит проверка полноты репликации и целостности ДНК. Митоз (М-фаза)

    1. Профаза . Хромосомы, каждая из которых состоит из двух одинаковых хроматид, начинают уплотняться и становятся видимыми внутри ядра. На противоположных полюсах клетки вокруг двух центросом из волокон тубулина начинает образовываться веретеноподобный аппарат.

    2. Прометафаза . Происходит разделение мембраны ядра. Вокруг центромер хромосом формируются кинетохоры. Волокна тубулина проникают внутрь ядра и концентрируются вблизи кинетохор, соединяя их с волокнами, исходящими из центросом.

    3. Метафаза . Натяжение волокон заставляет хромосомы выстраиваться посередине в линию между полюсами веретена, формируя тем самым метафазную пластинку.

    4. Анафаза . ДНК центромер, разделённая между сестринскими хроматидами, дуплицируется, хроматиды разделяются и расходятся ближе к полюсам.

    5. Телофаза . Разделённые сестринские хроматиды (которые с этого момента считают хромосомами) достигают полюсов. Вокруг каждой из групп возникает ядерная мембрана. Уплотнённый хроматин рассеивается и происходит формирование ядрышек.

    6. Цитокинез . Клеточная мембрана сокращается и посередине между полюсами образуется борозда дробления, которая со временем разделяет две дочерние клетки.

    Цикл центросомы

    Во время фазы G1 происходит разделение пары центриолей, сцепленных с каждой центросомой. На протяжении S- и G2-фаз справа от старых центриолей формируется новая дочерняя центриоль. В начале М-фазы центросома разделяется, две дочерние центросомы расходятся к полюсам клетки.